OCTOBER 2023 EBS 169&169J TRIGONOMETRY 1 HOUR 20 MINUTES

Candidate's Index Number	
Signature:	

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

COLLEGES OF EDUCATION FOUR-YEAR BACHELOR OF EDUCATION (B.ED) FIRST YEAR, END-OF-SECOND SEMESTER EXAMINATION, SEPT./OCT. 2023

4TH OCTOBER 2023

TRIGONOMETRY

3:40 PM - 5:00 PM

SECTION B [40 MARKS]

Answer only TWO questions from this Section.

Please, note that if you answer more than two questions, only the first two will be marked.

- 1. a. In $\triangle ABC$, |BC| = 12cm, $\angle ABC = 59^{\circ}$ and $\angle ACB = 73^{\circ}$. Find the length of the remaining two sides. (7 marks)
 - b. A central angle θ subtended by an arc length of 7cm and a radius of 4cm. Find: (6 marks)
 - i. the radian measure.
 - ii. the degree measure.
 - iii. the area of the sector determined by θ .
 - c. Two towns, $P(30^{\circ}N, 42^{\circ}W)$ and $Q(30^{\circ}N, 18^{\circ}E)$ are on the surface of the earth. Find, to one decimal place the distance between P and Q along latitude $30^{\circ}N$. (Take the radius to be 6400km and $\pi = 3.14$).
 - 2. a. Find, without using tables or calculators the exact value of $\tan 75^\circ$ and leave your answer in form $a + \sqrt{3}$.
 - b. Show that the equation is an identity by transforming the left hand side into the right hand side. $(\sec \theta + \tan \theta)(1 \sin \theta) = \cos \theta$. (5 marks)
 - c. Show that $3\cos\theta + 4\sin\theta$ may be expressed in the form $R\cos(\theta \alpha)$, where α is acute. (10 marks) Find the values of R and α .

- 3. a. Find the values of x in the interval $0^{\circ} \le x \le 360^{\circ}$ for which $\sin(2x + 30^{\circ}) = 0.8$. (5 marks)
 - b. Find the amplitude, the period, and the phase shift and sketch the graph of $y = 2\cos(3x \pi)$. (6 marks)
 - c. A helicopter sets out from its base P and flies on a bearing of 123° to point Q where it changes its course to 060° and flies 18km to point R. (9 marks)
 - i. Find the size of the angle PQR.
 - ii. Calculate the bearing on which the helicopter must fly to return directly to its base. When the helicopter is at point R it is 22km from its starting point.
- 4. a. Find the values of $\sin \theta$ and $\tan \theta$, if $\cos \theta = \frac{12}{13}$ and θ lies in the fourth quadrant. (5 marks)
 - b. Express $\cos^4 x$ in terms of values of the cosine function with exponent 1. (5 marks)
 - c. When the angle of elevation of the sun is 64°, a telephone pole that is tilted at an angle of 9° directly away from the sun casts a shadow 21 feet long on level ground. Calculate the approximate length of the pole.

 (10 marks)